ANTIBODY-DRUG CONJUGATES IN UROTHELIAL CANCER AND AN OVERVIEW IN OTHER GENITOURINARY CANCERS

Sandy Srinivas, MD
Stanford University Medical Center
California, USA
July 2020
Please note:

The views expressed within this presentation are the personal opinions of the author. They do not necessarily represent the views of the author’s academic institution or the rest of the GU CONNECT group.

This content is supported by an Independent Educational Grant from Bayer.

Dr. Sandy Srinivas has received financial support/sponsorship for research support, consultation or speaker fees from the following companies:

- Eisai, Janssen, Bayer, Genentech, Merck
• Antibody Drug Conjugates (ADCs) are an emerging class of targeted anticancer drug delivery agent that confer selective and sustained cytotoxic drug delivery to tumours.

• ADCs are structured from three main structural units:
 – monoclonal antibody against a specific target
 – linker molecule
 – Payloads: cytotoxic agent or drug

• Selection of an appropriate target, a monoclonal antibody, cytotoxic payload, and the manner in which the antibody is linked to the payload are key determinants of the safety and efficacy of ADCs.
ANTIBODY-DRUG CONJUGATES FOR UROTHELIAL CANCERS
BACKGROUND

• Patients with mUC who progress after platinum-based chemotherapy and immune checkpoint inhibitors have poor outcomes and limited treatment options

• UC is characterised by the expression of multiple cell surface antigens suitable for specific therapeutic targeting with antibody-drug conjugates (ADCs)

• **Two ADCs** in advanced development for **advanced urothelial cancer**:
 – **Enfortumab vedotin** (recently FDA approved)
 – **Sacituzumab govitecan** (late stage development)
Immuno-drug Conjugate
- Antibody target: Nectin-4
- Linker: Protease Cleavable
- Payload: MMAE - microtubule disrupting agent

EV-101 phase 1 study – initial assessment of efficacy and safety:
- 112 patients
- ORR: 43%
- PFS: 5.4 months

MMAE, monomethyl auristatin E; ORR, objective response rate; PFS, progression free survival
EV-201 STUDY DESIGN

- Single arm, pivotal phase 2 trial

Cohort 1
- Prior PD-1/L1 inhibitor and platinum-based therapy
- Enrolment completed July 2018
- N=128\(^1\)

Cohort 2
- Prior PD-1/L1 inhibitor, platinum naïve, cisplatin ineligible
- Enrolment ongoing

Enfortumab vedotin
- 1.25 mg/kg IV on days 1, 8, and 15 of each 28-day cycle

Primary endpoint: ORR per RECIST v1.1 as determined by BICR

Select secondary endpoints:
- DOR
- PFS
- OS
- Safety

\(^1\)3 patients did not receive enfortumab vedotin treatment: one each due to clinical deterioration, patient decision, and low haemoglobin after enrolment

BICR, blinded independent central review; DOR, duration of response; IV, intravenous; ORR, objective response rate; OS, overall survival; PD-1/L1, programmed cell death 1/programmed cell death ligand 1; PFS, progression free survival; RECIST, Response Evaluation Criteria in Solid Tumors

EV-201: COHORT 1
DEMOGRAPHICS AND DISEASE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Category</th>
<th>Patients (N=125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex, n (%)</td>
<td>88 (70)</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
</tr>
<tr>
<td>Median (min, max)</td>
<td>69 (40,84)</td>
</tr>
<tr>
<td>≥75 years, n (%)</td>
<td>34 (27)</td>
</tr>
<tr>
<td>ECOG PS of 1, n (%)</td>
<td>85 (68)</td>
</tr>
<tr>
<td>Primary tumour location, n (%)</td>
<td></td>
</tr>
<tr>
<td>Bladder/other</td>
<td>81 (65)</td>
</tr>
<tr>
<td>Upper tract</td>
<td>44 (35)</td>
</tr>
<tr>
<td>Number of prior systemic therapies, median (min, max)</td>
<td>3 (1, 6)</td>
</tr>
<tr>
<td>≥2 Bellmunt adverse prognostic factors</td>
<td>52 (42)</td>
</tr>
<tr>
<td>Metastasis sites, n (%)</td>
<td></td>
</tr>
<tr>
<td>Lymph nodes only</td>
<td>13 (10)</td>
</tr>
<tr>
<td>Visceral disease</td>
<td>112 (90)</td>
</tr>
<tr>
<td>Liver</td>
<td>50 (40)</td>
</tr>
<tr>
<td>PD-L1 status by combined positive score</td>
<td></td>
</tr>
<tr>
<td><10</td>
<td>78/120 (65)</td>
</tr>
<tr>
<td>≥10</td>
<td>42/120 (35)</td>
</tr>
</tbody>
</table>

1 Patients with 1 prior therapy had platinum and a PD-1/L1 inhibitor in combination;
2 Five patients were not evaluable for PD-L1

ECOG, Eastern Cooperative Oncology Group; PD-L1, programmed cell death ligand 1

EV-201 results highly consistent with phase 1 EV-101 trial in same patient population

<table>
<thead>
<tr>
<th>COHORT 1 ORR per RECIST v 1.1 assessed by BICR</th>
<th>Patients (N=125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed objective response rate, n (%) 95% confidence interval<sup>1</sup></td>
<td>55 (44)</td>
</tr>
<tr>
<td></td>
<td>(35.1, 53.2)</td>
</tr>
<tr>
<td>Best overall response per RECIST v. 1.1, n (%)</td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>15 (12)</td>
</tr>
<tr>
<td>Partial response</td>
<td>40 (32)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>35 (28)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>23 (18)</td>
</tr>
<tr>
<td>Not evaluable<sup>2</sup></td>
<td>12 (10)</td>
</tr>
</tbody>
</table>

¹Computed using the Clopper-Pearson method;
²Includes 10 patients who discontinued study prior to post-baseline response assessment, 1 patient who had uninterpretable post-baseline assessment and 1 patient whose post-baseline assessment did not meet the minimum interval requirement for stable disease

BICR, blinded independent central review; RECIST, Response Evaluation Criteria In Solid Tumors
EV-201: DURATION OF RESPONSE

EV-201: COHORT 1 DURATION OF RESPONSE WITH ENFORTUMAB VEDOTIN

At the time of analysis, 44% of responders had ongoing responses.

Median time to response: 1.8 mo (range: 1.2–9.2)

Most responses identified at first assessment

BICR, blinded independent central review; CR, complete response; DOR, duration of response; PR, partial response

EV-201: TREATMENT RELATED ADVERSE EVENTS

<table>
<thead>
<tr>
<th>Cohort 1 Treatment-related AEs by preferred term in ≥20% of patients (any Grade)(^1,2)</th>
<th>Patients (N=125) n (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any Grade</td>
<td>≥Grade 3</td>
</tr>
<tr>
<td>Fatigue</td>
<td>62 (50)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>Alopecia</td>
<td>61 (49)</td>
<td>0</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>55 (44)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>50 (40)</td>
<td>0</td>
</tr>
<tr>
<td>Peripheral sensory neuropathy</td>
<td>50 (40)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Nausea</td>
<td>49 (39)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>40 (32)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Dry skin</td>
<td>28 (22)</td>
<td>0</td>
</tr>
<tr>
<td>Weight decreased</td>
<td>28 (22)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Rash maculo-popular</td>
<td>27 (22)</td>
<td>5 (4)</td>
</tr>
</tbody>
</table>

- Most common adverse reactions (≥ 20%) included fatigue, peripheral neuropathy, decreased appetite, rash, alopecia, nausea, dysgeusia, diarrhea, dry eye, pruritus and dry skin\(^3\)
- Recommend holding treatment if blood glucose >250mg/dL\(^3\)
- Permanently discontinue for peripheral neuropathy ≥ grade 3\(^3\)

AEs, adverse events
MAXIMAL TARGET LESION REDUCTION BY PD-L1 STATUS AND BEST RESPONSE

- Responses observed regardless of PD-L1 expression level

OBJECTIVE RESPONSE RATE

Best overall response by RECIST v 1.1 (Investigator assessed), N=45

<table>
<thead>
<tr>
<th>Confirmed ORR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>73.3% (33/45)</td>
</tr>
<tr>
<td></td>
<td>(58.1, 85.4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CR</th>
<th>15.6% (7/45)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>57.8% (26/45)</td>
</tr>
</tbody>
</table>

CI, confidence interval; CPS, combined positive score; CR, complete response; EV, enfortumab vedotin; mUC, metastatic urothelial carcinoma; ORR, objective response rate; PD-L1, Programmed death-ligand 1; PR, partial response; RECIST, Response Evaluation Criteria In Solid Tumors
• Antibody target: Trop-2
• Linker: Hydrolysable linker
• Payload: SN-38-parent compound - irinotecan
• Trop-2 is an epithelial cell surface antigen highly expressed in UC
• Shown activity across multiple tumour types: NSCLC, SCLC, mTNBC

Humanised Anti-Trop-2 Antibody (hRS7)
- Directed towards Trop-2, an epithelial antigen expressed on many solid tumours

Linker for SN-38
- Hydrolysable linker for payload release
- High drug-to-antibody ratio (7.6:1)

SN-38 Payload
- Metabolite of topoisomerase I inhibitor
- SN-38 more potent than parent compound, irinotecan

ADC, antibody drug conjugate; mTNBC, metastatic triple-negative breast cancer; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; UC, urothelial cancer
SACITUZUMAB STUDIES

• **IMMU-132 Phase 1 study¹**
 – Initial assessment of efficacy and safety in 45 mUC patient's pts who progressed after ≥1 prior systemic therapy
 – ORR 31%
 – Grade ≥3 AEs in ≥5% of pts were neutropenia/neutrophil count decreased (38%), anaemia (11%), hypophosphatemia (11%), diarrhoea (9%), fatigue (9%), and febrile neutropenia (7%).

• **TROPHY-U-01: Phase 2 ongoing study²**
 – 35 patients post platinum and post CPI included in interim analysis
 – ORR 29%; CR 6%

TROPHY-U-01: TRAE ≥ 20% ANY GRADE OR ≥ 5% GRADE ≥3 (N=35)

<table>
<thead>
<tr>
<th>Category</th>
<th>Event</th>
<th>All Grades (%)</th>
<th>Grade 3 (%)</th>
<th>Grade 4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic</td>
<td>Neutropenia</td>
<td>66</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Leukopenia</td>
<td>40</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Anaemia</td>
<td>34</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Febrile neutropenia</td>
<td>11</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Lymphocyte count decreased</td>
<td>11</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Diarrhoea</td>
<td>57</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Nausea</td>
<td>43</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Abdominal pain</td>
<td>20</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>General disorders & administrative site conditions</td>
<td>Fatigue</td>
<td>54</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Infections & infestations</td>
<td>Urinary tract infection</td>
<td>14</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Skin & subcutaneous tissue</td>
<td>Alopecia</td>
<td>74</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metabolism & nutrition</td>
<td>Decreased appetite</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

AE, adverse event; CPI, checkpoint inhibitors; CR, complete response; ORR, objective response rate; TRAE, treatment related adverse event

CONCLUSIONS

- Immuno-drug conjugates are a new class of drugs in urothelial cancer
- Enfortumab vedotin approved in advanced or metastatic urothelial cancer post platinum, post checkpoint inhibitor
- Promising data of enfortumab in first line in combination with checkpoint inhibitors
- Ongoing studies with sacituzumab govitecan which targets Trop-2
- Await larger phase 3 confirmatory studies
ANTIBODY-DRUG CONJUGATES FOR OTHER GENITOURINARY CANCERS
ANTIBODY-DRUG CONJUGATES IN OTHER GU TUMOUR TYPES

• Prostate Cancer\(^1\)
 – Prostate-specific membrane antigen (PSMA) is over expressed on the surface of cancer cells and is therefore a suitable target for selective drug delivery through conjugated antibodies
 – There are a number of PSMA-ADC drugs in development for mCRPC that have shown promising activity in phase I/II trials
 – Clinical trials are ongoing to investigate the effects of sacituzumab govitecan which targets TROP-2 in patients with mCRPC (NCT03725761)\(^2\)

• Renal Cell Carcinoma\(^3\)
 – ENPP3 is a novel target specific to renal cell carcinoma (RCC) with minimal expression in normal tissue
 • ADCs targeting ENPP3 in initial human studies warrant further investigation
 – Other antigen targets for ADCs under investigation in RCC include: CD70, CD27L, TIM-1\(^4,5\)

ADC, Antibody drug conjugate; CD, cluster of differentiation; ENPP3, ectonucleotide pyrophosphatase/phosphodiesterase 3; GU, genitourinary; IL, interleukin; mCRPC, metastatic castration resistant prostate cancer; PSMA, prostate-specific membrane antigen; TIM-1, T-cell immunoglobulin and mucin domain 1
REACH GU CONNECT VIA TWITTER, LINKEDIN, VIMEO & EMAIL OR VISIT THE GROUP’S WEBSITE
http://www.guconnect.info

Follow us on Twitter @guconnectinfo
Follow the GU CONNECT group on LinkedIn
Watch us on the Vimeo Channel GU CONNECT
Email elaine.wills@cor2ed.com
GU CONNECT
Bodenackerstrasse 17
4103 Bottmingen
SWITZERLAND

Dr. Antoine Lacombe
Pharm D, MBA
Phone: +41 79 529 42 79
antoine.lacombe@cor2ed.com

Dr. Froukje Sosef
MD
Phone: +31 6 2324 3636
froukje.sosef@cor2ed.com